Exercise 9

Show that to represent each point in \mathbb{R}^{3} by spherical coordinates, it is necessary to take only values of θ between 0 and 2π, values of ϕ between 0 and π, and values of $\rho \geq 0$. Are coordinates unique if we allow $\rho \leq 0$?

Solution

By definition, the spherical coordinates of a point (x, y, z) in space are

$$
\begin{align*}
x & =\rho \sin \phi \cos \theta \tag{1}\\
y & =\rho \sin \phi \sin \theta \tag{2}\\
z & =\rho \cos \phi . \tag{3}
\end{align*}
$$

Square both sides of each equation and add the respective sides.

$$
\begin{aligned}
x^{2}+y^{2}+z^{2} & =(\rho \sin \phi \cos \theta)^{2}+(\rho \sin \phi \sin \theta)^{2}+(\rho \cos \phi)^{2} \\
& =\rho^{2} \sin ^{2} \phi \cos ^{2} \theta+\rho^{2} \sin ^{2} \phi \sin ^{2} \theta+\rho^{2} \cos ^{2} \phi \\
& =\rho^{2} \sin ^{2} \phi\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+\rho^{2} \cos ^{2} \phi \\
& =\rho^{2} \sin ^{2} \phi+\rho^{2} \cos ^{2} \phi \\
& =\rho^{2}\left(\sin ^{2} \phi+\cos ^{2} \phi\right) \\
& =\rho^{2}
\end{aligned}
$$

Take the square root of both sides to get ρ.

$$
\rho= \pm \sqrt{x^{2}+y^{2}+z^{2}}
$$

Either sign can be taken because the other terms on the right sides of equations (1), (2), and (3) take care of the sign as x, y, and z go from $-\infty$ to ∞. By convention, the positive sign is chosen.

$$
\rho=\sqrt{x^{2}+y^{2}+z^{2}}
$$

As $-\infty<x, y, z<\infty$, the square root function yields positive values: $\rho \geq 0$. θ is only present in equations (1) and (2) in the $\cos \theta$ and $\sin \theta$ terms. Both of these functions are 2π-periodic, so an interval 2π units long for θ is needed. To be consistent with polar coordinates, it's chosen to be $0 \leq \theta<2 \pi$. Solve equation (3) for ϕ.

$$
\begin{aligned}
\cos \phi & =\frac{z}{\rho} \\
\phi & =\cos ^{-1}\left(\frac{z}{\rho}\right) \\
\phi & =\cos ^{-1}\left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)
\end{aligned}
$$

As $-\infty<x, y, z<\infty$, the values that the inverse cosine yields are $0 \leq \phi \leq \pi$. This justifies the comparison with polar coordinates because $\rho \sin \phi$ is nonnegative and can be thought of as r.

It's pointless to consider both negative and positive values of ρ because then any point in space can be represented in more than one way. Changing ρ to $-\rho$ reflects the point through the origin as shown below. Changing θ to $\theta-\pi$ and ϕ to $\pi-\phi$ brings it back to the original point.

A point represented by (ρ, θ, ϕ) can be represented by $(-\rho, \theta-\pi, \pi-\phi)$ because

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta=-\rho \sin (\pi-\phi) \cos (\theta-\pi)=-\rho(\sin \phi)(-\cos \theta)=\rho \sin \phi \cos \theta=x \\
& y=\rho \sin \phi \sin \theta=-\rho \sin (\pi-\phi) \sin (\theta-\pi)=-\rho(\sin \phi)(-\sin \theta)=\rho \sin \phi \sin \theta=y \\
& z=\rho \cos \phi=-\rho \cos (\pi-\phi)=-\rho(-\cos \phi)=\rho \cos \phi=z
\end{aligned}
$$

